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Nonlinear oscillatory convection 
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A numerical analysis has been performed of three-dimensional time-dependent 
solutions which bifurcate supercritically from two-dimensional convection-roll solu- 
tions at the onset of the oscillatory instability. The bifurcating solutions describe a 
periodic shifting forward and backward of the convection rolls and lead to a strong 
deformation of the rolls as the Rayleigh number increases. Since the bifurcating 
solution is stable in the form of a travelling wave, the computational expense can 
be reduced by assuming a moving coordinate. Travelling-wave solutions have been 
computed in the case of rigid boundaries as a function of the Prandtl number and 
of the two basic wavenumbers a,, a, of the problem. The onset of oscillations reduces 
the heat transport in comparison with that of two-dimensional rolls because the 
occupation of a new degree of freedom of motion by the oscillation reduces the energy 
of the heat-transporting component of convection. A limited stability analysis of 
finite-amplitude travelling waves has been performed and the onset of an asymmetric 
mode of oscillations is determined as a function of the parameters of the problem. 
This mode appears to be identical with a mode that was observed in the numerical 
simulations of Lipps (1976) and McLaughlin & Orszag (1982). 

1. Introduction 
The onset of oscillatory convection has long received special attention among 

workers in the field of thermal convection because i t  represents an important step 
in the evolution towards turbulence. Detailed observations of oscillatory convection 
in low-Prmdtl-number fluids have been made by Willis & DeardorfT (1970) who 
clearly demonstrated that the oscillations consist of waves propagating along the axis 
of convection rolls. A theory of such waves was d&rived by Busse (1972) in the case 
of stress-free boundaries and has been extended to the case of rigid boundaries by 
Clever & Busse (1974, hereinafter referred to as I). While the onset of the oscillatory 
instability has been well understood on the basis of these theories and found to be 
in good agreement with the experimental data, the finite-amplitude properties are 
less well understood. The experimental observations indicate either a slight increase 
in the dependence on the Rayleigh number of the slope of the convective heat 
transport in air (Krishnamurti 1973) or no change at all (Brown 1973). A decrease 
in the slope has been observed in recent experiments on the onset of oscillations in 
liquid helium (Maeno, Haucke & Wheatley 1985). Other observations made in 
mercury suggest the opposite behaviour (Fauve 6 Libchaber 1981). Different Prandtl 
numbers and varying aspect ratios of the convection layers are probably responsible 
for most of the variations in the reported results. 

In this paper nonlinear properties of oscillatory convection are investigated for 
different Prandtl numbers as a function of wavenumber and Rayleigh number. In 
this respect the present analysis complements earlier numerical investigations by 
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Lipps (1976), Grotzbach (1982), and McLaughlin & Orszag (1982) who focused their 
attention on particular values of these parameters. In  particular, convection in air 
has been assumed throughout the earlier work, while the present paper emphasizes 
the Prandtl-number dependence. As will be shown, oscillatory convection appears to 
have a much more profound influence on the heat transport and other properties at 
Prandtl numbers lower than that of air. Other features of oscillatory convection also 
exhibit a strong dependence on the Prandtl number. While the present work was 
being completed the authors become aware of the work by Meneguzzi et al. (1985) 
which also presents numerical simulations of convection at low Prandtl numbers. The 
latter work complements the present analysis in several ways since it emphasizes 
stress-free boundaries which cause significant changes from the case of rigid bound- 
aries and since it also investigates transient effeets which are not studied in the 
present paper. 

The paper starts with an exposition of the mathematical method of analysis in 92 
and proceeds with a discussion of travelling waves in 93. The stability of these waves 
is investigated in 94. Some results for asymmetric travelling waves which replace the 
symmetric waves are also presented in 94. Concluding remarks are offered in $5. 

2. Mathematical formulation of the problem 
We consider convection in a horizontal fluid layer heated from below. Using 

the thickness d of the layer as lengthscale, d 2 / K  as timescale, and ~ u / d ~ y g  as the 
scale of the temperature, we can write the basic equation in dimensionless form. 
The symbols K ,  v, y ,  g refer to the thermal diffusivity, the kinematic viscosity, the 
coefficient of thermal expansion, and gravity respectively. The Boussinesq approxi- 
mation will be assumed, such that the velocity field is described by a solenoidal vector 
field. A general representation of those vector fields is given by 

v=Vx(Vxk$)+Vxk$Ed$+&$,  (2.1) 
where k is a unit vector. We choose k in the vertical direction parallel to the z-axis 
of a Cartesian system of coordinates with the origin on the median plane of the layer. 
The equations for the scalar functions q5 and $ are obtained from the z-components 
of the (curl), and the curl of the equations of motion, 

V ~ A ,  4 = ~ ' ( 6 .  [(d$ + E $ ) * v ( ~ $  +&+)I + t V ~ A ,  +}, ( 2 . 2 ~ )  
a 

(2.2b) 

where A, denotes the two-dimensional Laplacian, A, = V 2 -  (k*V),. The heat equa- 
tion for the dimensionless deviation 6 of the temperature distribution from the static 
state of the fluid layer is given by 

(2.24 

The Rayleigh number R and the Prandtl number P are defined in the usual way, 

where and T, are the temperatures at the upper and lower boundaries of the layer. 
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Equations (2.2), together with the boundary conditions 

a 
a Z  

q5 =-+ = + = e = o at z = &+, 

can be solved by the Galerkin technique. The dependent variables are expanded into 
complete systems of functions satisfying the boundary conditions (2.3). In  the 
simplest case of travelling-wave solutions, time-independent coefficients can be 
assumed, 

sin ha, y 4 = x [cisAv cos/3a,(z-ct)+aghv sin/3aZ(s-ct)l{ cos ha, y } g v ( z )  
8, A, IJ  

(2 .4~)  

(2.4b) 

(2 .4~)  

The indices /3 and A run through all non-negative integers while v runs through all 
positive integers. The functions gv(z)  were introduced by Chandrasekhar (1961, p. 
635) and have also been defined in equation (1 1 a) of I. In  the wavy brackets of (2.4) 
the upper functions must be chosen for odd integers 8, the lower functions for even 
/3. In  addition all coefficients with odd h + v may be dropped, if attention is restricted 
to travelling waves bifurcating in the form of the oscillatory instability from the 
solution describing steady rolls with the axis in the 2-direction. In  the case of an 
infinitesimal deviation from the steady-roll solution all terms with /3 2 2 may be 
dropped. Terms corresponding to /3 = 1 represent the eigenvector of the oscillatory 
instability where the phase of the disturbance has been fixed such that all terms 
proportional to cos a,@ - ct) vanish. As the amplitude of the disturbance increases 
terms symmetric in y and proportional to cos 2az(2-ct) are generated. Thus the 
higher-order terms continue to obey the symmetry property mentioned above. 

We obtain algebraic equations for the coefficients dgA,,, aPAv, 68A,,, . . . by multiplying 
(2.2) with the functions JbAV, dPAv, . . . and averaging the result over the fluid 
layer. The resulting equations cannot be given explicitly here; they are of the same 
form except for additional terms as equations (2.12) of Busse & Frick (1985). In  order 
to solve the equations numerically a truncation scheme must be introduced. 
Extending the procedure used in I we neglect all coefficients and equations with 
indices satisfying 

For given values of R, a, and a, the algebraic equations for the coefficients uPAv, etc. 
are solved by a Newton-Raphson iteration method. Since the phase of the travelling 
waves is arbitrary, we fix it by prescribing alll = 0. The corresponding equation 
obtained by the multiplication of ( 2 . 2 ~ )  with serves for the determination of 
the phase velocity c. 

/ 3 + A + V  > NT. (2.5) 
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The stability of the stationary-travelling-wave solutions can be investigated by 
superimposing infinitesimal disturbances $,8, $ onto the stationary solutions. 
Since experimental results and previous numerical computations indicate that the 
instability of the travelling-wave solution does not change the horizontal wave- 
lengths, we restrict attention to disturbances of the form (2.4), where the coefficient 
S is replaced by gpAu exp {crt} with analogous replacements for the other coefficients. 
lftrestrictions on the indices B,h, v are imposed. But owing to the symmetry of 
the stationary solution the disturbances separate into four classes; the index for the 
functions in the wavy bracket can either be of the same parity as for the stationary 
solution or of the opposite one. Independently the sum of the indices h and v can 
be either even or odd. This subdivision of the stability analysis greatly reduces the 
computational expanses. 

Once the strongest growing disturbances among the four classes has been deter- 
mined, its evolution to finite amplitude can be followed by a forward integration in 
time. For this purpose the coefficients in the representation (2.4) are assumed to be 
functions of time and the implicit dependence on time in the form of the moving 
coordinate x - ct is dropped, 

Since among the four classes of disturbances only the class with odd h + v and a parity 
of B opposite to that of the stationary solution gives rise to instability, only the case 
where the upper function in the wavy bracket corresponds to odd p+A+v and the 
lower bracket corresponds to even /?+A + v will be considered. A semi-implicit 
Crank-Nicholson scheme was used for the integration in time of the system of 
equations for the coefficients SpAY(t), etc., which are derived from the basic equations 
in the same way as the algebraic equations for the stationary solution. 

In principle the integration in time should also permit the generation of solutions 
in the form of standing waves. But it was observed that even with a suitable choice 
of initial condition the integration in time always led to travelling-wave solutions. 
This is not surprising since it is known from other studies that the standing-wave 
solutions are usually unstable with respect to travelling-wave disturbances. No 
special effort was therefore expanded to obtain standing-wave solutions. 

3. Travelling waves 
One of the characteristic properties of the oscillatory instability of convection rolls 

is the introduction of a toroidal velocity component connected with a vertical 
component of forticity. Figure 1 describes the growth of the kinetic energy associated 
with the toroidal component of the velocity field, 

where the angular brackets denote the average over the fluid layer. The data actually 
computed have been given in the figure to indicate their density. It is of interest to 
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FIGURE 1.  Dependence of the kinetic eE_ergy :of the toroidal component of motion on the 
supercritical Rayleigh number R - R,, for the indicated values of the Prmdtl number P with 
(az, ar) = (2.3,2.2) for P = 0.71, (az,ay) =1(2.2,2.6) for P+.1, (uz,ay) = (2.2,2.9) for P = 0.025. 

I 
see that E,,, exhibits a 1inear.growth as a function of the supercritical Rayleigh 
number R-R,,, over an extended range of the latter parameter except in the case 
of mercury. Here R,, denotes the Rayleigh number for the onset of the oscillatory 
instability. The wavenumbers a,, % that have been selected for the curves correspond 
to the range of observed wavenumbers (Willis & Deardorff 1970) and to the range 
where the oscillatory instability defines the boundary of stable rolls as shown in Clever 
& Busse (1978). When the dependence on the wavenumber a, of the travelling wave 
is analysed it is found that for air, P = 0.71, E,,, increases with increasing a, at a 
constant value of R -RII while at  lower Prandtl number E,,, decreases. This difference 
in the dependence of E,,, may be a reflection of the'Prandt1-number dependence of 
R,,. In the case of air the Rayleigh number RII for onset of oscillations is large and 
higher wavenumbers are more easily excited than in the case of the low values of R,, 
obtained in low-Prandtl-number fluids. 

Figures 2 and 3 show typical variations of the shape of the travelling waves as a 
function of the Rayleigh number. Againhppears  that higher harmonics are more 
easily excited in the case of air than in the case of the lower Prandtl number P = 0.1. 
A typical feature of the low-Prhn$tLnumber case appears to be the evolution with 
increasing Rayleigh number from the sinusoidal wave form to a zigzag wave form. 
But the amplitude of the distortion of the original rolls does not increase much after 
it has reached about half a wavelength. The increase in kinetic energy of the toroidal 
velocity component does not manifest itself primarily in a growing amplitude of the 
wave once (R-RII)/RII has reache$ a level qf the order 0.1-0.2. Instead the growing 
toroidal component of motion appears t o  be associated with the growth of higher 
harmonics of the wave and with an idcrease in tbfqquency  of oscillations. The latter 

1 
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FIGURE 2. Lines of constant vertical velocity in the plane z = 0 for travelling-wave convection with 
a, = 2.3, av = 2.2, P = 0.71. (a) R = 6.5 x 108; ( b )  7 x lo8; (c) 8 x lo3; (d)  lV. The truncation 
parameter NT = 9 has been used. The waves travel in the downward direction. 

effect is most pronounced in low-Prandtl-number fluids as shown in figure 4, while 
the former feature is more pronounced at a higher Prandtl number as suggested by 

The frequency of oscillation actually decreases first after the onset of the oscillatory 
instability in low-Prandtl-number fluids unless the wavenumber of the convection 
rolls is rather low. This phenomena is evident in figure 4 and must be attributed to 
the concurrent decrease of the circulation velocity of rolls. This decrease is also 
evident in the decrease of the kinetic energy of the poloidal component of motion 
shown in figure 5.  Note that the quantity 

figure 2. 

has been plotted in order to emphasize the dramatic change that occurs after the onset 
of travelling waves. But Epol itself also decreases with increasing R near R = R,, at 
least for the wavenumbers ay = 2.2 and 2.5. The fact that the change in the kinetic 
energy of the poloidal component of motion is less dramatic for lower wavenumbers 
of the convection rolls can be attributed to the onset of the oscillatory instability 
increasing the effective wavenumber of convection and thereby increasing the 
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FIGURE 3. Same aa figure 2, but for P = 0.025, a, = 2.2, ay = 2.9. 
(a) R = 2000; ( b )  2200; (c) 2350; ( d )  2500. 

efficiency of convection in converting available potential energy into mechanical 
energy of motion. For wavenumbers closer to the critical value this effect is much 
smaller. 

It is not surprising that the kinetic energy of the poloidal component of motion 
grows less rapidly or even decreases after a new degree of freedom of motion becomes 
occupied. Less expected is the property that'the total kinetic energy of the travelling 
waves is lower than that of the steady rolls. This fact holds for the low-Prandtl- 
number cases, though not for air for which a slight increase in the total kinetic energy 
can be seen in table 1. In table 1 the numerical values of the Nusselt number have 
also been listed. The Nusselt number describes the ratio between the heat transport 
with and without convection and is given by 

Nu = 1 - R-' Z ndoon. (3.3) 

For P = 0.71 the Nusselt number for convection rolls and travelling-wave convection 
is so close that the difference is not easily discerned in a graphical representation. 
In fact, the numerical differences for different truncation numbers NT tend to 

n 
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FIQURE 4. The frequency o of the symmetric travelling waves as a function of R- R, for the Prandtl 
numbers P = 0.025 (I), P = 0.1 (11), P = 0.71 (111). The wavenumbera, w u m e s  the values 2.9 (I), 
2.6 (11), 2.2 (111). The different curves correspond to a, = 1.9, 2.2, 2.5 (I), a, = 1.9, 2.2 (11), and 
a, = 2.0, 2.3, 2.6 (111). At the low-Rayleigh-number end the frequency increases monotonically 
with a, in each case. 
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FIQTJRE 5. Kinetic energy E,, of the poloidal component of motion for two-dimensional rolls ant 
for three-dimensional wave solutions branching off the two-dimensional solution with differen 
values of a, as indicated. The upper set of curves corresponds to P = 0.1, a, = 2.6, the lower on' 
to P = 0.025, ay = 2.9. 
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0.5 

t 
NU- 1 

0.1 
300 10s 

R - R , -  

FIGURE 6. Nusselt number Nu aa a function of R-R, for two-dimensional rolls and 
travelling-wave solutions with a, = 1.9, 2.2, 2.5 (as indicated) in the case P = 0.1, ay = 2.6. 

overshadow the difference between two- and three-dimensional convection. But the 
rate of numerical convergence can be estimated from the results for different NT, and 
the comparison of values from two-dimensional computations for a given NT with 
those from three-dimensional computations at  the same N T  should give the most 
reliable estimate for the ratio of the heat transport. The rate of convergence is usually 
found to be better for three-dimensional than for two-dimensional computations at 
the same values of NT. This property is caused by more rapid increase of the number 
of modes in the former case. 

The onset of oscillatory instability adds a new sink of energy in the form of the 
dissipation by the toroidal component of motion without providing an additional 
source of energy since the latter component of motion does not contribute to the work 
of the buoyancy force. Thus one expects the efficiency of the heat transport to 
decrease in the evolution of travelling-wave convection from rolls with the same 
wavenumber ay. Table 1 shows this effect. The relative small difference between the 
Nusselt numbers for two- and three-dimensional convection appears to be caused by 
B compensating effect. Because of the increasing %-dependence of convection with 
increasing wave amplitude the effective wavenumber of convection is also increased. 
From the study of two-dimensional convection it is well known that the Nusselt 
number increases with increasing ay in the relevant parameter region (see Table 1 
of I). This effect thus compensates in part the inefficiency of the heat transport by 
travelling waves noted above. 

In low-Prandtl-number fluids this compensating effect is too weak to be significant. 
The dramatic change in the Nusselt-number dependence on the Rayleigh number 
shown in figures 6 and 7 indicates that the onset of oscillatory instability destroys 
the subtle balance by which the phenomenon of inertial convection is approached in 
steady rolls (Jones, Moore & Weiss 1976; Clever & Busse 1981). But in connection 
with the evolution from sinusoidal to zigzagging waves the heat transport recovers 
and exhibits an even stronger increase with Rayleigh number than that of two- 
dimensional rolls. The comparison with experimentally measured values in the case 
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FIGURE 7. Same as figure 0 for P = 0.025, ay = 2.9. In addition the Numelt number foray = 3.1 17 
has been included (left curve). Experimental results of Krishnamurti (1973), given by the dashed 
line, and of Rossby (1969) are shown for comparison. In the latter case symbols indicate different 
layerdepths:d=O.l9cm(O; l .Ocm(x) ;  1 .8cm(A) .  

of mercury indicates good agreement. The strong recovery of the heat transport by 
travelling-wave convection suggests an effect similar to that of inertial convection 
in steady rolls. In  the latter case the curl of the advection term o*Vo is minimized 
by nearly circular streamlines. The zigzag wave pattern with piecewise straight rolls 
may indicate a balance similar to that for steady rolls. 

4. Transition to asymmetric-travelling-wave convection 
From the numerical simulations of Lipps (1976) and McLaughlin & Orszag (1982) 

it is known that the symmetric-travelling-wave solutions discussed in the preceeding 
section become aaymmetric as the Rayleigh number is increased. In  this section we 
investigate this process using a stability analysis and study its dependence on the 
Prandtl number and other parameters of the problem. As has already been indicated 
in 92 the stability analysis will be restricted to disturbances with the same horizontal 
periodicity as that of the symmetric-travelling-wave solution. With this restriction 
the possible disturbances separate into four classes depending on their symmetry with 
respect to the stationary travelling waves. When maximum real parts of the growth 
rate t~ are computed as a function of the Rayleigh number, i t  is found that always 
the same class of disturbances gives rise to the eigenvalue v for which the real part 
6, becomes positive first with increasing Rayleigh number R. This class of 
disturbances is characterized by the property that the parity with respect to the 
y-dependence is opposite to that of the stationary-travelling-wave solution, i.e. 
sinha,y-terms in the representation for 8 correspond to even indices B, while 

14-2 
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P = 0.71, a, = 2.2 P = 0.1, a, = 2.6 

a z = 2 . 0  u z = 2 . 3  u Z = 2 . 6  a , = 1 . 9  a z = 2 . 2  a ,=2 .5  a z = 1 . 9  a ,=2 .2  uz=2 .5  

P = 0.025, a, = 2.9 

RI,, 11270 9110 7830 2918 2683 2680 2453 2382 2293 

fli 15.95 11.40 8.95 4.015 3.856 4.043 1.061 1.330 1.255 

TABLE 2. Rayleigh numbers R,,, and imaginary parts ri of growth rates for the onset of 
asymmetric oscillations (NT = 8) 

cos Aa, y-terms correspond to odd /I. Concurrently coefficients kpAv, cisAv, etc. with even 
A + v vanish for this class of disturbances. 

The critical values R,,, of the Rayleigh number at which asymmetric disturbances 
first start to grow and the corresponding values of the imaginary part cr, of the growth 
rate are shown as a function of a, in table 2. The truncation parameter NT = 8 has 
been used for these calculations. Some tests carried out with NT = 9 indicate that 
the results approach the exact results to within a few percent. Evidently waves with 
short wavelengths are more unstable than those with longer wavelengths. The onset 
of instability depends primarily on the amplitude of the wave, measured in terms 
of the distortion of the original rolls. A rough measure for the onset of the asymmetric 
instability is that the kinetic energy of the toroidal component of motion reaches 
about one quarter of the kinetic energy of the poloidal component of motion. This 
fraction is a little less than one quarter in the case of air and a little more in the 
low-Prandtl-number cases. 

The imaginary part cr, of the growth rate cr is comparable with the frequency of 
the stationary travelling waves. In  general ui is smaller than w1 = c/a,, but it 
approaches this value in the case of mercury for higher values of a,. Since the stability 
analysis is performed in the system of reference with respect to which the travelling 
waves are stationary, the presence of the finite imaginary part a, indicates that a 
time dependence with the frequency w2 = w1 &cri is introduced by the growing 
instability. The numerical simulation to be reported below shows that the negative 
sign must be chosen in this relationship. 

Because the transition to asymmetric travelling waves is associated with a second 
frequency, it is in general not possible to find a frame of reference with respect to 
which the travelling wave becomes stationary. This complication has led us to 
introduce the representation (2.7) and to solve in a few cases the basic equations by 
numerical integration in time. Starting from the symmetric-travelling-wave solution 
as the initial condition with small disturbances of the asymmetric kind superimposed, 
the solution approaches a state which can be described approximately as the 
superposition of two travelling waves onto the steady-roll configuration. Because of 
their opposite symmetry properties the two waves interact mainly through the terms 
describing the time-independent component of convection. A typical example of this 
form of time-dependent convection is shown in figure 8. As the two waves propagate 
along the rolls at  different speeds the maximum distortion of the roll occurs 
alternately on the centre roll and the outer rolls shown in the figure. The two main 
frequencies, 25.2 and 12.9, exhibited by the asymmetric travelling wave correspond 
closely to the frequency w1 = 25.0 (for NT = 7)  of the symmetric travelling wave and 
to the disturbance frequency o2 = q - c r ,  x 12.8. A more detailed inspection of the 
time dependence indicates a tendency towards phase locking which is not surprising 
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FIGURE 8. Evolution in time of an asymmetric travelling wave for P = 0.71, a, = 2.3, av = 2.2, 
R = 10'. The plots which show lines of constant vertical velocity in the plane z = 0 show a sequence 
in time from (a)+) with a timestep At = 0.05. The truncation parameter NT = 7 has been used. 

in view of the approximate relationship w1 = 2w,. But because of the weak phase- 
dependent part of the interaction between symmetric and asymmetric components 
of the travelling wave, the phase locking lasts only for about five to ten periods. 

The above-developed picture of the asymmetric travelling waves agrees basically 
with the findings of Lipps (1976) and McLaughlin & Orszag (1982). The shape of the 
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waves and their two main frequencies are in general agreement if the slight differences 
in the horizontal wavenumbers are taken into account. The relatively small value 
of a, used by Lipps together with the short timespan of his numerical simulation may 
be responsible for the fact that he did not observe in his run D the periodic shifting 
of the maximum distortion back and forth between the inner and outer roll as shown 
in figure 8. 

The stability analysis performed by us did not reveal any indication of a weak 
instability which could be responsible for the high second frequency found by 
McLaughlin & Orszag (1982) in the frequency spectrum in the regime of symmetric 
travelling waves. Since the power associated with this second frequency is less than 

of the power of the primary frequency the possibility of a numerical effect 
perhaps cannot be excluded. In their numerical simulation of the asymmetric 
travelling wave in air at Rayleigh numbers between 9 x los and 12 x lo3 McLaughlin 
& Orszag sometimes find a third frequency. This frequency could arise from the weak 
tendency of the convection to move temporarily into a frequency-locked state. 

5. Discussion 
The analysis of the preceding sections has in part been motivated by the conflicting 

claims about the effect of oscillatory convection on the Nusselt number. The 
theoretical results indicate quite clearly that the onset of travelling waves decreases 
the efficiency of the convective heat transport. The small decrease in the slope of the 
Nu-R relationship for air at  R = R,, is in agreement with the observation made by 
Brown (1973), that no significant change in the slope of the experimentally measured 
Nu-R relationship could be detected at the onset of oscillations. Because the average 
measured wavenumber a, decreases with increasing Rayleigh number and because 
of the three-dimensionality of the experimentally observed convection pattern, the 
measured values of Nu- 1 are smaller by about 10 % than the calculated values of 
table 1 .  The property that the change in slope increases with decreasing Prandtl 
number is evident from the measurement of the heat transport in liquid helium 
(Maeno et al. 1985). The changes in slope of opposite sign observed for convection 
in mercury by Fauve & Libchaber (1981) must thus be explained as a different 
physical phenomenon. Because of the small width-to-height ratio of the layer used 
by the latter authors, a rearrangement or change in the number of the convection 
rolls may well lead to kinks in the Nu-R dependence. Since no significant deviations 
from the earlier data of Rossby (1969) were seen and since the latter can be well 
interpreted in terms of the heat transport by travelling waves according to figure 7, 
there does not seem to be any significant discrepancy between the present theory and 
the observations by Fauve & Libchaber. 

McLaughlin t Orszag (1982) have demonstrated the important role played by the 
transition to asymmetric travelling waves. The introduction of a second frequency 
by this transition was found to be the precursor for the onset of chaotic motions in 
accordance with the Ruelle-Takens scenario. It will be of interest to extend the 
computations by McLaughlin & Orszag to other Prandtl numbers since these authors 
studied only the case of air for a special horizontal-periodicity interval. Recently 
Meneguzzi et al. (1985) made some progress in this direction. They obtained chaotic 
solutions in the case of stress-free boundaries. But in the case of rigid boundaries the 
aperiodic components of motions always decayed in time. According to the analysis 
of the present paper the explanation for their result must be sought in the fact that 
their Rayleigh numbers were chosen below the critical values R,,, for the onset of 
asymmetric travelling waves. 
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